Trigonometric Ratios and Equations: A Quick Reference
Trigonometric Ratios
- Sine (sin): Opposite side / Hypotenuse
- Cosine (cos): Adjacent side / Hypotenuse
- Tangent (tan): Opposite side / Adjacent side
- Cosecant
(csc): 1 / sin - Secant (sec): 1 / cos
- Cotangent (cot): 1 / tan
Pythagorean Identity
- sin²Î¸ + cos²Î¸ = 1
Trigonometric Identities
- Double Angle Formulas:
- sin(2θ) = 2sinθcosθ
- cos(2θ) = cos²Î¸ - sin²Î¸ = 2cos²Î¸ - 1 = 1 - 2sin²Î¸
- tan(2θ) = 2tanθ / (1 - tan²Î¸)
- Half Angle Formulas:
- sin(θ/2) = ±√[(1 - cosθ) / 2]
- cos(θ/2) = ±√[(1 + cosθ) / 2]
- tan(θ/2) = sinθ / (1 + cosθ) = (1 - cosθ) / sinθ
- Sum and Difference Formulas:
- sin(α + β) = sinαcosβ + cosαsinβ
- sin(α - β) = sinαcosβ - cosαsinβ
- cos(α + β) = cosαcosβ - sinαsinβ
- cos(α - β) = cosαcosβ + sinαsinβ
- tan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)
- tan(α - β) = (tanα - tanβ) / (1 + tanαtanβ)
Trigonometric Equations
- Solving trigonometric equations often involves using trigonometric identities and algebraic techniques.
- Common methods include:
- Factoring
- Using quadratic formula
- Using trigonometric identities
- Graphing
Example: Solve sin(2x) = cos(x)
- Use the double angle formula for sin(2x): 2sin(x)cos(x) = cos(x)
- Divide both sides by cos(x): 2sin(x) = 1
- Solve for sin(x): sin(x) = 1/2
- Find the solutions in the given interval: x = π/6, 5π/6