Trigonometric Ratios and Equations

 

Trigonometric Ratios and Equations: A Quick Reference

Trigonometric Ratios and Equations

Trigonometric Ratios and Equations

Trigonometric Ratios and Equations

Trigonometric Ratios and Equations

Trigonometric Ratios

  • Sine (sin): Opposite side / Hypotenuse  
  • Cosine (cos): Adjacent side / Hypotenuse  
  • Tangent (tan): Opposite side / Adjacent side
  • Cosecant (csc): 1 / sin  
  • Secant (sec): 1 / cos  
  • Cotangent (cot): 1 / tan

Pythagorean Identity

  • sin²Î¸ + cos²Î¸ = 1

Trigonometric Identities

  • Double Angle Formulas:
    • sin(2θ) = 2sinθcosθ
    • cos(2θ) = cos²Î¸ - sin²Î¸ = 2cos²Î¸ - 1 = 1 - 2sin²Î¸
    • tan(2θ) = 2tanθ / (1 - tan²Î¸)
  • Half Angle Formulas:
    • sin(θ/2) = ±√[(1 - cosθ) / 2]
    • cos(θ/2) = ±√[(1 + cosθ) / 2]
    • tan(θ/2) = sinθ / (1 + cosθ) = (1 - cosθ) / sinθ
  • Sum and Difference Formulas:
    • sin(α + β) = sinαcosβ + cosαsinβ
    • sin(α - β) = sinαcosβ - cosαsinβ
    • cos(α + β) = cosαcosβ - sinαsinβ
    • cos(α - β) = cosαcosβ + sinαsinβ
    • tan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)  
    • tan(α - β) = (tanα - tanβ) / (1 + tanαtanβ)  

Trigonometric Equations

  • Solving trigonometric equations often involves using trigonometric identities and algebraic techniques.  
  • Common methods include:
    • Factoring
    • Using quadratic formula  
    • Using trigonometric identities
    • Graphing

Example: Solve sin(2x) = cos(x)

  • Use the double angle formula for sin(2x): 2sin(x)cos(x) = cos(x)
  • Divide both sides by cos(x): 2sin(x) = 1
  • Solve for sin(x): sin(x) = 1/2
  • Find the solutions in the given interval: x = Ï€/6, 5Ï€/6

#buttons=(Ok, Go it!) #days=(20)

Our website uses cookies to enhance your experience. Check Now
Ok, Go it!